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The one-particle electron transition current density (TCD) for vibronic transitions between pairs of stationary
states in molecules is defined. Expressions for TCD are developed using the complete adiabatic (CA) formalism
in which the electronic wave function carries an explicit dependence on the nuclear momenta, as well as the
usual dependence on nuclear positions. In the case of vibronic transitions, the principal non-Born-
Oppenheimer (non-BO), nuclear-momentum-dependent contribution to TCD is accompanied by a less important
BO, nuclear-position-dependent contribution. For vibrational transitions within a single electronic state, the
BO contribution vanishes, leaving only non-BO, nuclear-momentum-driven TCD. In the limit of pure electronic
transitions, or vibrational transitions within a single electronic state, it is shown that electron TCD satisfies
the continuity equation for the conservation of electron transition probability density (TPD) for any pair of
stationary states. TCD is a vector field having a unique representation at each point in the Cartesian space
of a molecule. It is shown that TCD is a dynamic representation of the changes in TPD associated with
electrons in molecules under the influence of a transition-inducing perturbation and that it provides direct
visual information concerning the participation of all spatial regions of the molecule in quantum transitions.
The use of TCD provides an opportunity to view uniquely electronic motion associated with quantum
mechanical transitions in molecules.

Introduction

By far, the most common visual representation of electrons
in molecules is the electron probability density, the absolute
square of the electronic wave function.1,2 For electronic
transitions, it is possible to represent thechangesin electron
density in terms of electron probability difference maps, and
similarly, for vibrational transitions, it is possible, but not
common, to represent changes in electron probability density
with nuclear motion in terms of difference maps.3 Although
these density difference maps provide some useful information
with regard to changes in probability density during transitions,
they are only scalar fields.
A second, fundamental density function that can be defined

for every electron wave function is the electron probability
current density.4,5 The current density is a vector field, the
magnitude and direction of which are defined at every point in
the space of the wave function. Electron current density
describes the spatial flow of electron probability that is a result
of changes in the latter with time. Since electron probability
cannot be lost or gained in a closed system, such as a stable
molecule, the electron probability density is a conserved quantity
and obeys the continuity equation relating the electron prob-
ability and current density functions,

Here, at every point in the space of the molecule, the negative
spatial gradient of the current density equals the rate of change
with time of the electron probability density. This is a
fundamental relationship between these two electron-density
functions.
For molecules in stationary states, there is no change in the

probability density with time, and hence, from eq 1, the electron

current density must vanish at all points in space. Since most
applications of quantummechanics to molecular systems involve
considerations of stationary states, there has been little motiva-
tion to consider electron current density as a means to visualize
electronic motion within individual quantum states in molecules.
Recently,6 we demonstrated that electron current density can

be defined forpairsof simple electronic orbitals in atomic and
molecular systems. In this case, two stationary states can exhibit
electrontransition current density (TCD) associated with the
oscillations of electron probability density that occur under the
influence of perturbations that induce electronic transitions
between these two states. In this context, electron current
density emerges as a valuable visual tool from which to learn
more about electronic motion associated withtransitions
between pairs of stationary states.
In this paper, we extend the formalism of electron TCD to

include explicitly multielectron wave functions, vibronic detail
in electronic transitions, and, as a special case, pure vibrational
transitions within a single electronic state. To achieve these
objectives, we employ complete adiabatic (CA) wave functions,
defined and developed previously.7,8 These wave functions are
factored products of electronic and vibrational wave functions
in the Born-Oppenheimer (BO) sense but include the lowest-
order non-BO contribution through an explicit dependence of
the electronic part of the wave function on the nuclear momenta
(or velocities) as parametric (classical) variables. The nonfac-
torable nature of the non-BO part of the wave function can be
recovered, whenever desired, by converting the classical nuclear
momenta to their quantum mechanical form and allowing them
to operate on the nuclear, vibrational part of the wave function.
Including non-BO contributions is indispensable to the

description of electron current density induced by molecules
undergoing vibrational transitions, and the CA formalism
provides a particularly appealing way to understand the interplay
between the oscillation of electron probability and currentX Abstract published inAdVance ACS Abstracts,September 15, 1997.
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densities during vibrational motions. In particular, changes in
probability density can be correlated to nuclear positions
(displacements) and are described within the BO approximation
in accordance with the right-hand side of eq 1, whereas current
density is induced by and correlated with nuclear velocities using
pure non-BO contributions. The right- and left-hand sides of
eq 1 are then governed by BO and non-BO contributions,
respectively, and yet equal one another exactly, thereby achiev-
ing conservation of electron transition probability density. As
shown in section III, the case of vibronic transitions is more
complex and it is found that both BO and non-BO contributions
occur for the electron probability density (TPD) and TCD, albeit
to different degrees.

Theoretical Background

As background for the development of expressions for
vibronic and vibrational TCD, we provide general definitions
for the electron TCD and TPD functions and demonstrate that
these transition densities obey the continuity equation. In
addition, we present the direct relationship between TCD and
the velocity form of the electric-dipole transition moment, the
absolute square of which is proportional to the electric-dipole
absorption intensity of the transition.
1. Definition of Transition Current Density. We define

the multiparticle time-dependent molecular wave function
associated with a nondegenerate stationary staten as

where the electron positionsr i are enumerated explicitly, while
the nuclear positions are simply represented byR. The tilde
over the wave function symbol denotes a complex quantity,
which, in the case of a nondegenerate stationary state, arises
solely from its time dependence, as indicated in eq 2. The radial
frequency is given byωn ) En/p, whereEn is the energy of
staten andp is Planck’s constant divided by 2π. The single-
particle electron probability density for staten is given by

where we integrate the absolute square of the wave function
over all particle coordinates except those of electron 1. Since
only one electronic position remains, and since all electrons are
indistinguishable, we can write the electron probability density
more simply as

where we have suppressed the reference to coordinates over
which we have integrated in eq 3. In the second part of this
equation, we show that the electron probability density for a
nondegenerate stationary state is time independent, since the
product of the exponential time-dependent factor, given in eq
2, multiplied by its complex conjugate is unity.
The single-electron current density for staten is defined as

where (∇1 + ... + ∇N) is the vector gradient operator of the
electrons. As in eq 4, the time dependence vanishes, and after

integrating over all but the coordinates of electron 1, we have

Since the time-independent wave function,Ψn(r ), is real, eq 6
vanishes at all points in space. Given the vanishing of the
current density and the time independence of eqs 4 and 6, it is
clear that the continuity equation given in eq 1 is satisfied. In
other words, for a stationary state, the probability density does
not change with time and there are no currents.
The situation changes entirely for a nonstationary state. The

simplest nonstationary state is a linear combination of two
stationary states of different energy where we assume, for
simplicity, that the mixing coefficients,ci, are time independent.
This is the case for a small perturbation, which may be periodic,
but does not change its strength with time. We label such a
state with two subscripts to denote the stationary statesn and
m as

and we have, for economy, suppressed the coordinates of the
other electrons and the nuclei. The nonstationary-state electron
probability density is given by the absolute square of eq 7 and
leads to the following expressions:

Here,ωnm ) ωn - ωm is the frequency difference, or beat
frequency, between the two stationary states, and the real, time-
independent electron transition probability density (TPD) is
defined as6,9

Equation 8 consists of a constant part from the single-state
densities and a sinusoidally varying part that depends on the
TPD. Both eqs 8 and 9 are symmetric with respect to
interchange of indices for statesn andm, and no bias toward
either state is indicated. However, in the case of a weak
perturbation of staten by statem, the single-state term with
cm2 in eq 8 may dropped as small.
The electron current density for the nonstationary-statenm

is given by

where we have defined the real, time-independent electron
transition current density (TCD) as6

Although, overall, eq 10 is symmetric with respect to interchange
of subscriptsn andm, both the TCD and the sinusoidal time-
dependent factor are odd with respect to this interchange. For
reasons demonstrated above, the current density also has no
single-state time-independent terms and consists only of the
time-varying transition cross term that depends equally, but
oppositely, on both contributing stationary states. The TCD
represents the magnitude and direction of the oscillating vector

jn(r , t) ) p
2mi

[Ψ*n(r )∇Ψn(r ) - Ψn(r )∇Ψ*n(r )] (6)

Ψ̃nm(r , t) ) cnΨ̃n(r , t) + cmΨ̃m(r , t) (7)

Fnm(r , t) ) Ψ̃*nm(r , t)Ψ̃nm(r , t)

) cn
2Fn(r ) + cm

2Fm(r ) + 2cncmOnm(r )cosωnmt (8)

Onm(r ) ≡Ψn(r )Ψm(r ) (9)

jnm(r , t) ) p
2mi

[Ψ̃*nm(r , t)∇Ψ̃nm(r , t) - Ψ̃nm(r , t)∇Ψ̃*nm(r , t)]

) 2cncmJnm(r ) sinωnmt (10)

Jnm(r ) ≡ p
2m

[Ψn(r )∇Ψm(r ) - Ψm(r )∇Ψn(r )∇Ψn(r )] (11)

Ψ̃n(r1, r2, ..., rN, R, t) ) Ψn(r1, r2, ..., rN, R) exp(-iωnt)
(2)

Fn(r1, t) )∫Ψ̃*n(r1, r2, ..., rN, R, t) ×
Ψ̃n(r1, r2, ..., rN, R, t) dr2, ..., drN, dR (3)

Fn(r , t) ) Ψ̃*n(r , t)Ψ̃n(r , t) ) Ψn
2(r ) ) Fn(r ) (4)

jn(r1, t) ) p
2mi∫[Ψ̃*n(r1, r2, ..., rN, R, t)(∇1 + ...+ ∇N) ×

Ψ̃n(r1, r2, ..., rN, R, t) -
Ψ̃n(r1, r2, ..., rN, R, t)(∇1 + ...∇N) ×

Ψ̃*n(r1, r2, ..., rN, R, t)] dr2, ..., drN, dR (5)
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field of currents that is set in motion when staten is perturbed
or mixes with statem, or Vice Versa.
2. Conservation of Transition Probability and Current

Density. Because the probability and current densities for the
nonstationary state wave function,Ψ̃nm(r , t), as given in eqs 8
and 10, are defined in accordance with standard quantum
mechanical definitions, eq 1 for this wave function is obeyed.
Hence, we can write the continuity equation for the conservation
of probability and current density as

Using the expressions in eqs 8 and 10 we have that

From eqs 12-14, we can extract the continuity relation for the
transition densities TPD and TCD defined above, namely,

where we have chosen to reverse the order of the subscripts of
the beat frequency with the view that them state is a higher-
energy perturbing state andωmn will represent a positive
frequency difference.
Equation 15 can be verified explicitly by developing further

the gradient of the TCD. Recalling that reference to the other
electron coordinates, over which integration is performed, has
been suppressed for simplicity, we can first write

Carrying out the gradient operation within the integrand using
the generalization of the expression for the TCD in eq 10 toN
electrons yields contributions for each electron of the form

where the two terms in which the gradient operates separately
on each wave function in the product cancel; this leaves only
the two quadratic terms. The Laplacian operators in eq 17 can
be converted to kinetic energy operators for each of the electrons
and from there to the complete Hamiltonian by adding ap-
propriate potential energy terms to the kinetic energy operators.
The potential energy terms can, of course, be removed by
cancellation of the two terms in eq 17 if desired, since the
potential energy operators commute with the wave functions.
Summing the contributions of theN electrons in eq 17, we have
for eq 16

The Hamiltonian operator of the molecule yields the energy of

the stationary state,Ei, when acting on the corresponding wave
function. After suppressing again the dependence on the other
electron coordinates, we can write

which verifies eq 15. We conclude that the TCD and TPD
represent, respectively, the electron transition current and
probability densities that oscillate at the beat frequency of two
coupled stationary states between which quantum mechanical
transitions can take place. Any perturbation, such as an
electromagnetic field, that is in resonance with the beat
frequency can induce transitions between the two states.
3. Relation to the Electric-Dipole Transition Moment.

We next consider additional properties of electron TCD. In
particular, we define its relationship to electric-dipole transition
moments and hence to the absorption (or emission) intensity of
electronic transitions in molecules. We consider first the
expression for the electronic contribution to the position form
of the electric-dipole transition moment

where the transition dipole density (TDD) is defined as

Alternatively, we can write the expression for the contribution
of the electrons to the velocity form of the electric dipole
transition moment as

where a dot over a symbol refers to its classical time derivative.
The integrals in eq 22 are odd with respect to interchange of
the indicesn andm, and hence, we can write the velocity form
of the electric-dipole transition moment in terms of the TCD
as

Comparing eqs 20 and 23, we see that the electric-dipole
transition moment can be expressed in terms of either the TDD
or the TCD, both of which are vector field densities. In the
limit of an exact wave function, the position-dipole and velocity-
dipole forms of the electric-dipole transition moment equal one
another; however, there is a significant difference between the
information carried by the TDD compared to that of the TCD.
From eq 21 it can be seen that the vector field represented by
Mmn(r ) depends critically on the choice of the origin of the
coordinate system to whichr is referred. In particular, all the
vectors in this field are pointing radially away from the origin
of coordinates, and spatial locations in the immediate vicinity
of the origin have greatly diminished contributions (moments),
and the point at the origin obviously has no contribution. As
result, even though the dipole transition moment itself is not
origin dependent, its integrand is origin dependent.
On the other hand,Jmn(r ) is not origin dependent. This vector

field depicts the velocity vector of the probability density at
individual points in space as a unique, origin-independent
representation. The general preference for the position form

-∇‚jnm(r , t) )
∂Fnm(r , t)

∂t
(12)

-∇‚jnm(r , t) ) -2cncm∇‚Jnm(r ) sinωnmt (13)

∂Fnm(r , t)
∂t

) -2cncmωnmOnm(r )sinωnmt (14)

-∇‚Jnm(r ) ) ωmnOnm(r ) (15)

-∇‚Jnm(r ) ) -∫(∇1 + ...+ ∇N)‚Jnm(r1, ..., rN) dr2, ..., drN
(16)

-∇i‚Jnm(r i) ) - p
2m

[Ψn(r i)∇i2Ψm(r i) - Ψm(r i)∇i2Ψn(r i)]
(17)

-∇‚Jnm(r ) ) - p
2m∫[Ψn(r1, ..., rN)(∇12 + ...+ ∇N2) ×

Ψm(r1, ..., rN) - Ψm(r1, ..., rN)(∇12 + ...+ ∇N2) ×
Ψn(r1, ..., rN)] dr2, ..., drN

) 1
p
∫[Ψn(r1, ..., rN)HΨm(r1, ..., rN) -

Ψm(r1, ..., rN)HΨn(r1, ..., rN)] dr2, ..., drN (18)

-∇‚Jnm(r ) ) 1
p
(Em - En)Ψn(r )Ψm(r ) ) ωmnOnm(r ) (19)

(µr)mn) -∫Ψm(r )erΨn(r ) dr ) -e∫Mmn(r ) dr (20)

Mmn(r ) ≡Ψm(r )rΨn(r ) ) rOmn(r ) (21)

(µv)mn) -∫Ψm(r )er3 Ψn(r ) dr )

-∫Ψm(r )(-iepm
∇)Ψn(r ) dr (22)

(µv)mn) iep
2m∫[Ψm(r )∇Ψn(r ) - Ψn(r )∇Ψm(r )] dr )

-ie∫Jnm(r ) dr (23)
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over the velocity form of the interaction of radiation with atoms
and molecules may be another reason for the absence of use of
electron TCD, up to this point, as a visual aid to a more graphic
understanding of electronic transitions.
Finally, we note that TCD is a special representation of the

integrand of the velocity form of the electric-dipole transition
moment, one that obeys the continuity relation in eq 19. In
general, the integrand of the velocity form of the electric-dipole
moment is not the same as TCD; i.e., TCD requires two terms.

Transition Current Density in Vibronic Transitions

In this section, we extend the theory presented above to the
case of vibronic transitions where both electronic and vibrational
quantum numbers change during a transition. We use the
formalism of the complete adiabatic (CA) approximation, as
discussed above, to describe the vibronic wave function.7,8 In
this way the vibronic wave function can be augmented by the
lowest order correction to the BO approximation using a notation
that puts the nuclear-position and nuclear-velocity dependence
of the electronic wave function on an equal footing. Use of
the CA approximation also provides a convenient basis for
extending the formalism of TCD to pure vibrational transitions.
1. Complete Adiabatic Wave Function. The formalism

associated with the CA wave function has been described
previously.7,8 In this section, we summarize the derivation of
this wave function to provide a link between the CA approxima-
tion and a more rigorous treatment of vibronic transitions. In
the CA approximation, the energy of the vibrational substructure
of electronic states is ignored relative to the energy spacing
between pure electronic states. The approximation is particu-
larly favorable for the description of the nuclear-velocity
dependence of the ground electronic state and for excited
electronic states well separated from all neighboring electronic
states.
We begin by writing, through first-order perturbation by the

nuclear kinetic energy operator, the non-BO wave function for
a vibronic state ev,

where the first term is the usual BO product of the electronic
and nuclear wave functions and the second term is a perturbation
summation over the BO excited vibronic states su. The nuclear
kinetic energy operator is given by the sum over all nuclei as

In the present context, the most important contribution to the
perturbation matrix element is the cross term that couples the
electronic and nuclear motions, and this is given by

where R refers to a summation over the Cartesian vector
componentsx, y, andz. The nuclear position dependence of
the BO electronic wave function can be written as a sum over
states as

where the superscript or superscript zero refers to evaluation
of the electronic wave function at the equilibrium nuclear
position. This permits us to write the non-BO vibronic wave
function to first order in the nuclear coordinates as

where the symbols used are

and the nuclear velocity operator is given by

We now assume that the vibrational detail can be dropped
from the frequency denominator in eq 28 by writingωsu,ev=
ωse
0 ) (Ee

0 - Es
0)/p. This allows summation over all vibrational

levels u to closure, which eliminates all dependence on the
excited-state vibrational wave functionsφsu. This in turn
removes the nuclear velocity operator from the matrix element
over the nuclear coordinates and allows the nuclear velocity to
become a parametric variable of the electronic wave function.
With these approximations, the complete non-BO vibronic wave
function is now factorable into a product of a vibrational wave
function and an electronic wave function that depends on both
nuclear velocity and position. Carrying out these steps leads
to the CA vibronic wave function

The nuclear velocity,R4 , is used as a classical variable to specify
the velocities of individual nuclei in much the same way that
nuclear positions are specified in the determination of the
electronic part of the wave function in the BO approximation.
Since the CA wave function remains factored into electronic
and nuclear parts, it is as an adiabatic wave function, even
though the lowest-order non-BO contribution is included. The
nonadiabatic nature of this wave function can be restored by
replacing the values of the nuclear velocities by their quantum
mechanical operators, which then operate on the nuclear
(vibrational) wave functions. The use of nuclear velocity
derivatives has also been used in a closely related, alternative
development of the theory of vibrational circular dichroism by
Buckingham and co-workers.10,11

The first two terms in square brackets in eq 32 represent the
zeroth- and first-order BO expressions for the electronic wave
function. The last term is the CA, non-BO term that depends
classically on the nuclear velocities. This term is imaginary
and leads to a complex electronic wave function in the same
way that the perturbation of a molecule with a magnetic field
creates electron currents described by a complex wave function.
If the nuclear velocities are replaced by their quantum mechan-

Ψev(r , R,) ) ψe(r , R)φev(R) -

∑
su*ev

〈ψsφsu|TN|ψeφev〉

Esu- Eev
ψs(r , R)φsu(R) (24)

TN ) -p2∑
A

1

2MA

∇A2 (25)

〈ψsφsu|TN|ψeφev〉 = -p2∑
A,R

1

MA
〈ψs| ∂∂RAR

|ψe〉〈φsu| ∂∂RAR
|φev〉
(26)

ψe(r , R) ) ψe
0(r ) + ∑

s*e,A,R
〈ψS

0|(∂ψe/∂RAR)0〉ψS
0(r )RAR (27)

Ψ̃ev(r , R) ) ψe
0
φev + ∑

A,R
∑
s*e
Des,AR
0 ψS

0RARφev +

∑
A,R

∑
su*ev

Des,AR
0 ψS

0
φsu

ωsu,ev

〈φsu|iṘAR|φev〉 (28)

Dse,AR
0 ) 〈ψS

0|(∂ψe/∂RAR)0〉 (29)

ωsu,ev) (Esu- Eev)/p (30)

ṘAR ) -ip
MA

∂

∂RAR
(31)

Ψ̃ev(r , R, R4 ) ) ψ̃e(r , R, R4 )φev(R) )

[ψe
0 + ∑

A,R
∑
s*e
Des
0 ψs

0(RAR +
iṘAR

ωes
0 )]φev (32)
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ical operators, the molecular wave function becomes real again
but is no longer adiabatic in the sense that it is not factorable
into electronic and nuclear parts.
2. Complete Adiabatic Vibronic TCD and TPD Expres-

sions. For a transition between states ev and e′v′, we consider
the nonstationary-state wave function

which is a linear combination of the two participating stationary
states and whose mixing coefficients are time-independent, or
changing very slowly on the time scale of the transition
frequencies. The expression for the single-electron time-
dependent current density is obtained by substitution of eq 33
into eq 10:

where we integrate over the nuclear coordinates to obtain a
single-particle electron current density having no explicit
nuclear-position or nuclear-velocity dependence. Using eq 32
for the CA vibronic wave function in eq 33 and keeping terms
through first order in the nuclear positions and velocities, we
obtain

where the expression for the time-independent TCD, also
defined above in eqs 10 and 11, is given by

and where the pure electronic TCD is given in accordance with
the general definition in eq 11 as

The corresponding expression for the time-dependent electron
probability density is given by

from which, after substitution of eqs 32 and 33, we obtain the
following expression for the time-dependent electron probability
density

where the time-independent TPD, also defined in eqs 9 and 10
above, is given by

and where the pure electronic TPD is given simply by

From these expressions, it can be seen that in eqs 36 and 40
the BO nuclear-position-dependent terms contribute with op-
posite relative signs compared to the non-BO nuclear-velocity-
dependent terms. For the TCD in eq 36, the non-BO terms
reinforce and the BO terms tend to cancel, while the reverse is
the case for the TPD in eq 40.
The relative sizes of theindiVidual BO and non-BO contribu-

tions, apart from their relative signs as just discussed, are
approximately the ratio of the energy spacings of vibrational
levels v and v′, compared to that of electronic levels e or e′ and
s. This can be seen by comparing corresponding BO and non-
BO terms in either eq 36 or 40 and noting that the vibrational
matrix elements of the nuclear velocity operator carry a
vibrational frequency dependence relative to the corresponding
matrix element of the nuclear position operator (see eq 49
below). Thus individual non-BO terms are smaller than the
corresponding BO terms unless the electronic energy level
spacing approaches the spacing of vibrational levels. This is
the standard criterion for the breakdown of the BO approxima-
tion. However, the net relative importance of these terms in
these expressions depends on whether the probability density
or the current density is being calculated. In the case of
probability density, the BO terms tend to dominate and for
current density, the non-BO terms are generally more important.
As shown below, in the limiting case of vibrational transitions,
the TPD to first order depends only on BO terms whereas the
TCD depends only on non-BO terms.
3. Conservation of Probability and Current Density. The

conservation equation for TCD and TPD is satisfied in the
general case of a vibronic transition between states ev and e′v′
as given by the wave function in eq 33, before approximations
are invoked, by direct analogy to eqs 7-15. Conservation also
holds for pure electronic TCD and TPD given by eqs 37 and
41, respectively, for the same reason. Exact conservation is
not apparent in the case of vibronic transitions using vibronic
wave functions approximated by first-order perturbation theory
and in the more special case of the CA approximation.
Algebraic complexities arise when two quantum numbers,eand
V, change independently, leading to more than one harmonic
frequency and more than one transition matrix within the same
expressions for TPD and TCD. As we show below, the exact
algebraic conservation is restored for the case of pure vibrational
transitions where the electronic quantum number does not
change.

Transition Current Density in Pure Vibrational
Transitions

An important limit of the TCD and TPD expressions for a
vibronic transition is the case of pure vibrational transitions
within a single electronic state. If state e′ is set equal to e,
then from eqs 36 and 40 the expressions for pure vibrational

Ψ̃ev,e′v′(r , R, R4 , t) ) cevΨ̃ev(r , R, R4 ) exp(-iωevt) +
ce′v′Ψ̃e′v′(r , R, R4 ) exp(-iωe′v′t) (33)

jev,e′v′(r , t) ) p
2mi∫[Ψ̃*ev,e′v′(r , R, R4 , t)∇Ψ̃ev,e′v′(r , R, R4 , t) -

Ψ̃ev,e′v′(r , R, R4 , t)∇Ψ̃*ev,e′v′(r , R, R4 , t)] dR (34)

jev,e′v′(r , t) ) 2cevce′v′Jev,e′v′(r )sinωev,e′v′t (35)

Jev,e′v′(r ) ) {Jee′0 (r )〈φev|φe′v′〉 + ∑
A,R
[∑
s*e′

Dse′,AR
0 Jes

0 (r ) -

∑
s*e
Dse,AR
0 Jes

0 (r )]〈φev|RAR|φe′v′〉 +

∑
A,R[∑s*e′Dse′,AR

0 Jes
0 (r )

ωse′
0

+ ∑
s*e

Dse,AR
0 Je′s

0 (r )

ωse
0 ]〈φev|iṘAR|φe′v′〉} (36)

Jee′
0 (r ) ) p

2m
[ψe

0(r )∇ψe′
0(r ) - ψe′

0(r )∇ψe
0(r )] (37)

Fev,e′v′(r , t) )∫Ψ̃*ev,e′v′(r , R, R4 , t)Ψ̃ev,e′v′(r , R, R4 , t) dR (38)

Fev,e′v′(r , t) ) 2cevce′v′Oev,e′v′(r )cosωev,e′v′t (39)

Oev,e′v′(r ) ) {Oee′
0 (r)〈φev|φe′v′〉 + ∑

A,R
[∑
s*e′

Dse′,AR
0 Oes

0 (r ) +

∑
s*e
Dse,AR
0 Oe′s
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TCD and TPD, respectively, are given by

From these equations it is clear that electron TCD associated
with nuclear, vibrational motion is governed solely by non-BO
nuclear velocity contributions and that the corresponding TPD
is governed by BO nuclear position contributions. This means
that pure vibrational TCD is induced by nuclear velocities and
formally lies outside the BO approximation but that the
redistribution of probability density due to nuclear displace-
ments, and caused by the TCD, is described within the BO
approximation.
1. Conservation of Vibrational Electronic Current Den-

sity. We can demonstrate the close relation between nuclear-
velocity-induced electron current density and nuclear-position-
induced changes in electron probability density through the
application of the continuity equation given in general terms
by eq 12. For pure vibrational transitions we have

where the time-dependent densities from eqs 35 and 39,
respectively, are given by

Applying the negative gradient to eq 42 and the time-derivative
to eq 43, we obtain

and if we convert the velocity form of the vibrational integral
in eq 47 to the position form using the well-known hypervirial
equation

and use the continuity equation for pure electronic TCD and
TPD, given in general form in eq 15, namely,

we can write eq 47

in exact equality with eq 48 and hence verifying the continuity
equation in eq 44.

Discussion

For bound, stationary states of molecules, there are nonzero
electron probability densities as well as changes of probability
densities between two different stationary states. On the other
hand, as we have shown, the electron current density vanishes
at every point in the space of the molecule for a single bound
stationary state. This fact has prevented extensive use of
electron current density for visualizing the nature of unperturbed
electronic and vibrational states in molecules.
The limitation is circumvented if we consider two-state

properties associated with the coupling of two stationary states
by a perturbation. In this case, the two states beat against one
another at their difference frequency, setting up nonzero time-
dependent oscillations of both electron probability density and
electron current density. We have defined the time-independent
amplitude of these probability and current density oscillations
as the transition probability density, TPD, and the transition
current density, TCD, respectively.
In this paper we have extended the theory of electron TCD

and TPD to molecular transitions involving nuclear motion in
vibronic transitions, in general, and pure vibrational transitions,
in particular. The theory of TCD and TPD in vibronic
transitions is carried out through first order in nuclear displace-
ment and momentum (velocity), and it is found that both BO
and non-BO terms contribute, although differently, to both the
TPD and TCD. For pure vibrational transitions, this mixing of
BO and non-BO contributions gives way to only BO terms for
the TPD and non-BO terms for the TCD. One of the most
pleasing results of the theory of TPD and TCD for pure
vibrational (nuclear) transitions within a single electronic state
is the way the pure BO contributions in TPD join forces with
the non-BO contributions in TCD to satisfy exactly the
continuity equation for the conservation of charge and current
density. In the present formulation, the vibrational TCD is
composed of an energy-weighted sum of the product of the
vibrational coupling integral and the pure electronic TCDs of
the excited states of the molecule.
The derivation of TCD and TPD through time dependent

expressions for the electron probability density and current
density, respectively, eqs 8 and 10, reveals a fundamental
relationship between these two density functions. Both are
associated with the internal oscillations that take place in a
nonsteady stationary state comprised of two stationary states.
They occur in- and out-of-phase (sine and cosine) with respect
to one another during the quantum beat oscillations. The TPD
is associated with the extremes of electron probabilitydisplace-
mentaway from equilibrium and the TCD is associated with
the extremes of electron probabilityVelocity, or current density,
at the zero displacement position. TPD is the static representa-
tion of the oscillation and TCD is the dynamic representation.
This description of densities oscillating in- and out-of-phase

is most clear for vibrational transitions where the TCD represents
the electron current density that follows the nuclear velocities
and similarly TPD that follows nuclear displacements. Each is
out of phase with respect to the other in a cycle of harmonic
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motion at the transition frequency. The analogy carries over
clearly to pure electronic transitions where the electron TCD is
a vector field representing the dynamics of the oscillation of
electron probability for electronic transitions in the same way
that electron currents follow nuclear velocities during the motion
associated with vibrational transitions. Since there is no
restriction on the pairs of states that can be represented with
TCD, it should be possible to view the oscillations associated
with higher level vibrational transitions, such as overtones and
combination bands. It may also be interesting to view the
electron TCDs associated with vibronic transitions in which
there are changes of both electronic and vibrational quantum
states.
Although we have not done so in this paper, it is straight-

forward to extend the concept of TCD to the motion of the nuclei
as well. For vibrational transitions, this would just lead to
representations of nuclear velocity vector fields that would take
into account the quantum description of the location of the nuclei
in molecules. The nonzero nuclear vector fields would be highly
localized and would coincide closely with the classical positions
and velocities of the nuclei.
In section 3 of the Transition Current Density in Vibronic

Transitions section, we pointed out that the integral of the TCD
is closely related to the velocity electric-dipole transition
moment between the two quantum states. It is important to
realize that TCDs are nonzero and well-defined for any pair of
quantum states whether or not the transition between the two
states is electric-dipole allowed. If it is electric-dipole forbidden,
then the integral over space of the TCD vanishes by symmetry,
but nevertheless, strong TCD throughout the molecule can be
calculated and plotted to see the nature of the electron oscillatory
currents for higher multipoles that are set in motion due to the
coupling of the two states.
The use of TCDs to visualize the vector fields associated with

electron currents set up during transitions in molecules is a
powerful new approach to understanding the dynamic nature
of electronic motion in all classes of changes of molecular
quantum states. The simplest examples are changes in pure
electronic states, vibronic states, pure vibrational states, rota-
tional states, and so forth for similar combinations of changes
of quantum state.
We have carried out calculations of TCD for pairs of pure

electronic states12 and pure vibrational states.13 Besides the
expected current densities associated with the principal allowed
nature of the transition, for examplex- or z-allowed electric
dipole transitions, there are interesting current effects off the
main current path, which by symmetry may integrate to zero
when calculating a molecular transition property, such as
electric-dipole absorption strength. Another interesting effect,
particularly in transitions with some magnetic-dipole character,
is the current density associated with the circulation of charge
density. Since circulation need not lead to changes in TPD,
the effects of such currents are silent and can be only be seen
by calculating the TCD.
TCDs may be used to compare differences between quantum

mechanical calculations of transition properties associated with
pairs of states. Since the experimental observable for virtually
all quantum mechanical states is a property associated with a
transition between two states, TCD is a fundamental way to
visualize the results of such calculations and to investigate the
fundamental nature, in spatial detail, of the electronic motions
associated with these transitions.
One can also consider current density associated with

reactions between two docked molecules, where the initial and
final states correspond to the electronic states of the reactant

and product molecules. For electron transfer reactions, the
transition current density associated with this single quantum
mechanical process can be visualized using this formalism. In
cases where long-range electron transfer in biological molecules
occurs as a single quantum mechanical transition, TCDs may
be calculated from the initial and final states to visualize this
process and thereby to gain a better understanding of the relative
importance of various “electron pathways”. This topic has been
considered with the objective of calculating the probability of
transitions between initial and final state wave functions, but
electron pathways were not explicitly considered.14,15 An
alternative approach is to use path integral simulations to
calculate the behavior of an excess electron propagated through
π-orbitals as a means to understanding long-range electron
transfer in biological molecules.16

A related application of TCD is to visualize the electronic
and vibrational motion of electrons in molecules that conduct
current. Examples are conducting organic crystals or
polymers17-19 and chemical switches that permit the flow of
electronic excitation from one part of a molecule to another.20

TCD can also be considered as a visual, theoretical tool in the
emerging field of molecular electronics where molecular frag-
ments can serve as electronic components, such as molecular
switches20 and wires,21 in the fabrication of molecular level
ensembles of devices of various kinds.

Conclusions

We have shown that the theory of TCD and TPD in molecules
can be extended to include vibrational motion. For vibronic
transitions, the theory is relatively complex and involves the
appearance of both BO and non-BO contributions to the TPD
and the TCD. For pure vibrational transitions, the theory
simplifies such that, to first order in the nuclear position and
momentum, only BO terms contribute to the TPD and only non-
BO terms contribute to TCD. Through the continuity equation
we see that TPD and TCD are nuclear-static and nuclear-
dynamic densities associated closely with the oscillations of
electron densities during vibrational motion. These two types
of oscillation are out of phase, since the oscillations of TPD
peak at the extremes of nuclear displacement, and are correlated
with nuclear displacements, whereas the TCD peaks at the
equilibrium nuclear positions where the nuclear velocities are
at their maxima.
TCD is a unique, fundamental way to visualize vector fields

associated with all classes of transitions between stationary
quantum states in molecules. It appears, therefore, that the
potential for TCD to aid our understanding of the electronic
motions during such changes of states molecules is quite high.
This potential is further enhanced by the rapidly growing power
of computational chemistry to provide detailed views of electron
probability and current density in molecules.
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